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1 Introduction

Part of a ship’s cargo is voluntarily jettisoned in order to save the vessel and the remaining

cargo from imminent peril. How should the loss be shared among the cargo owners?

The law of general average, an ancient principle of the general maritime law of nations,

prescribes that the owners share the loss in proportion to the respective values of their cargo.

Its roots can be traced back to a provision of Roman law, Digest XIV.2.1, which cites the

Rhodian law of jettison: “The Rhodian law provides that if cargo has been jettisoned in

order to lighten a ship, the sacrifice for the common good must be made good by common

contribution” (Watson 1998, p. 419). Modern courts have interpreted this maxim to require

pro rata contribution.1 A contemporary statement of the law of general average, which is

also known simply as general average, is set forth in Zim Israel Navigation Co., Ltd. v. 3-D

Imports, Inc., 29 F. Supp. 2d 186, 190 (S.D.N.Y. 1998) (citations omitted):

“General Average is an ancient doctrine, referring to rules apportioning loss

suffered by cargo owners whose goods are sacrificed in a maritime adventure. . . .

[W]hen one partner in the adventure sacrifices its cargo or incurs expenses for

the general safety of the ship and other cargo, the loss is assessed against all

participants in proportion to their respective share in the adventure. Today,

contribution in General Average is recognized by all major maritime nations.”

Prior work by Landes and Posner (1978, pp. 106-108) showed that the law of general

average has important efficiency properties. Their model, however, assumed cargo values are

objective and public information, whereas they often are subjective and private information.

Consequently, Landes and Posner analyzed only the incentives provided by the law of general

average for the ship master’s decisions regarding which and how much cargo to jettison.

They showed that the general average principle gives the master the incentive to minimize

the collective loss “by selecting the lowest-valued (per lb.) goods to jettison.” But they did

not consider the incentives it provides owners for truthful reporting of cargo values.

Epstein (1993, pp. 582-584) recognized that the “secret” to making the general average

mechanism “work,” in the sense of enabling the master to minimize the collective loss, is

to get truthful reporting of cargo values.2 (In fact, truthful reporting is sufficient, but not

necessary, to enable the master to minimize the collective loss. What’s necessary is truthful

ordering, i.e., the owners’ declared values must be in the same rank order as their true values.)

1See, e.g., Cia. Atlantica Pacifica, S.A. v. Humble Oil & Refining Co., 274 F. Supp. 884, 891 (D. Md. 1967)
(“The principle embodied in this maxim [is] that loss for the common benefit which is incurred by one who
partakes in a maritime venture should be shared ratably by all who participate in the venture. . . .”). See
also Empire Stevedoring Co. v. Oceanic Adjusters, Ltd., 315 F. Supp. 921, 927 (S.D.N.Y. 1970).

2See also Gregory et al. (1977, pp. 35-36).
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Epstein offered intuition for why the law of general average gives owners the right incentives

for truthful reporting. However, he did not provide a formal game-theoretic treatment or

welfare analysis of the general average mechanism.

We model the general average game and analyze whether the law of general average

is a truthful and efficient mechanism. That is, we investigate whether the law of general

average induces truthful reporting of cargo values and yields a Pareto efficient allocation

in equilibrium. We show that truthful reporting is not a Bayesian Nash equilibrium of the

general average game if owners have expected utility preferences, but that truthful reporting

is the unique Nash equilibrium if owners have maxmin utility preferences. We further show

that if owners have expected utility preferences, (i) the law of general average does not yield

a Pareto efficient allocation in equilibrium because it does not induce truthful ordering (let

alone truthful reporting) in equilibrium,3 and (ii) even with truthful reporting, an allocation

prescribed by the law of general average, which ipso facto entails proportional loss sharing,

is Pareto efficient if and only if owners have identical (up to a positive scalar) CRRA utility

functions.4 If owners have maxmin utility preferences, by contrast, the law of general average

not only induces truthful reporting, it also yields a Pareto efficient allocation.

In addition to contributing to the niche literature on the economics of general average,

our paper makes contributions to two broader literatures in economics and law.

The first is the economics of mutual insurance. The paper most closely related to ours is

Cabrales et al. (2003) which analyzes a mutual fire insurance mechanism in Andorra called

La Crema. In the La Crema game, each homeowner reports the value of his house. In case

of a fire, one or more houses burn down, where nature determines which and how many

houses burn. Each owner of a burned house receives his reported value, which is paid by all

homeowners (including himself) in proportion to their reported values. The general average

game is similar. Each cargo owner declares the value of her cargo. In an emergency, cargo

is jettisoned in ascending order of declared value, where nature determines how much cargo

must be jettisoned. Each owner of jettisoned cargo receives her declared value, which is

paid by all cargo owners (including herself) in proportion to their declared values. The key

difference between the two games is that in the La Crema game whether an owner’s house

burns down is independent of the reported values, whereas in the general average game

whether an owner’s cargo is jettisoned depends on all the declared values including her own.

The second broader literature to which we contribute is the economics of ancient law.

A prime example is Aumann and Maschler (1985) which presents a game-theoretic analysis

3Again, truthful ordering means that the owners’ declared values have the same rank ordering as their
true values. That is, the set of declared values is an order-preserving transformation of the set of true values.

4The acronym CRRA stands for constant relative risk aversion.
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of a bankruptcy problem in the Babylonian Talmud and shows that the Talmudic solution

coincides with the nucleolus of the corresponding coalitional game. The principle underlying

the Talmudic solution is not proportional division. Still, the Talmudic bankruptcy problem

and the general average problem are similar in that the core question is how to divide a

residual among claimants whose claims sum to more than the total value of the residual.

Miller (2010) collects two dozen contributions to this literature which cover a wide range of

topics including ancient liability systems, family law, land law, and criminal law.

The remainder of the paper proceeds as follows. Section 2 is a brief primer on the law

of general average. Section 3 describes the general average game. Sections 4 and 5 present

our equilibrium results for the cases where cargo owners have expected utility preferences

(the Bayesian game) and where owners have maxmin utility preferences (the maxmin game),

respectively. Section 6 presents our efficiency results for both cases. Section 7 concludes the

paper with a discussion in which we compare and contrast our results with those of Cabrales

et al. (2003), suggest why maxmin behavior may be reasonable in the general average context,

and point to directions for future research. The Appendix collects selected proofs.

2 The Law of General Average

In maritime law, the term “average” means damage or loss (Shoenbaum 2011, p. 253). It is an

anglicization of the French nautical term avarie, which in turn derives from the Arabic word

‘awār through the Latin (and later Italian) avaria (Healy and Sharpe 1999, p. 760; Khalilieh

2006, p. 150). The term “general average” refers to a collective loss. It is the loss incurred

when, for the benefit of all parties with a financial interest in the voyage, part of a ship or its

cargo is voluntarily sacrificed to avoid a common imminent peril (Chamberlain 1940, p. 89).

Under the law of general average, the parties share the collective loss in proportion to the

values of their respective interests (Healy and Sharpe 1999, p. 761; Khalilieh 2006, p. 151).5

The principle embodied in the law of general average dates back to antiquity. The

Babylonian Talmud, Bava Kamma 116b, articulates the principle in the context of land

caravans: “If a caravan was traveling through the wilderness and a band of robbers threatened

to plunder it, the apportionment [for buying them off] will have to be made according with

the [value] of possessions [in the caravan]” (Friedell 1996, p. 656). A snippet of Roman law,

Digest XIV.2.1, which references the Rhodian law of jettison, is the earliest statement of

the principle in the maritime context: “The Rhodian law provides that if cargo has been

jettisoned in order to lighten a ship, the sacrifice for the common good must be made good

by common contribution” (Watson 1998, p. 419). Later statements appear in medieval

5See also, e.g., Rose (1997, p. 2) and Robertson et al. (2001, p. 426).
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European maritime codes such as the Rolls of Oleron and the Laws of Wisby, and in early

modern maritime codes such as the Guidon de la Mer and the Ordonnance de la Marine

(Barclay 1891; Lowndes et al. 1912, pp. 4-16).6

By the turn of the nineteenth century, the law of general average had been incorporated

into the English common law (Lowndes et al. 1912, pp. 18 & 21). Justice Lawrence of the

Court of King’s Bench gave the following definition in Birkley v. Presgrave, 1 East 220, 228

(1801): “All loss which arises in consequence of extraordinary sacrifices made or expenses

incurred for the preservation of the ship and cargo comes within general average, and must

be borne proportionably by all who are interested” (Lowndes et al. 1912, p. 21).7

In McAndrews v. Thatcher, 70 U.S. 347, 366 (1865), the United States Supreme Court

defined the law of general average as follows:

“[W]here two or more parties are in a common sea risk, and one of them makes

a sacrifice or incurs extraordinary expenses for the general safety, the loss or

expenses so incurred shall be assessed upon all in proportion to the share of each

in the adventure; or, in other words, the owners of the other shares are bound to

make contribution in the proportion of the value of their several interests.”8

Three requirements must be met for a loss to qualify for general average contribution: “First,

that the ship and cargo should be placed in a common imminent peril; secondly, that there

should be a voluntary sacrifice of property to avert that peril; and, thirdly, that by that

sacrifice the safety of the other property should be presently and successfully attained.”9 The

archetypal general average case involves the jettison of cargo.10 However, general average

applies to other losses as well,11 including sacrifices of part of the vessel such as the cutting

away of the mast,12 and to extraordinary expenses incurred for the joint benefit of the vessel

and cargo, such as those sustained in freeing the ship from the strand of a river.13

6The principle was incorporated into Islamic legal codes from the eighth century (Khalilieh 2006, p. 160).
7See also The Copenhagen, 1 Chr. Rob. 289 (1799), in which Lord Stowell of the Court of Admiralty

wrote: “General average is for a loss incurred, towards which the whole concern is bound to contribute pro
rata, because it was undergone for the general benefit and preservation of the whole” (Lowndes et al. 1912,
p. 18).

8See also Star of Hope, 76 U.S. 203, 228 (1869); Fowler v. Rathbones, 79 U.S. 102, 114 (1870); Hobson
v. Lord, 92 U.S. 397, 404 (1875); Ralli v. Troop, 157 U.S. 386, 395 (1895). The earliest general average cases
in the U.S. Supreme Court were Columbian Insurance Co. v. Ashby, 38 U.S. 331, 338 (1839), and Barnard
v. Adams, 51 U.S. 270 (1850).

9Columbian Insurance Co. v. Ashby, 38 U.S. 331, 338 (1839). See also, e.g., Barnard v. Adams, 51 U.S.
270 (1850); Ralli v. Troop, 157 U.S. 386 (1895).

10See Ralli v. Troop, 157 U.S. 386, 393 (1895); Rose (1997, p. 5)
11For a non-exhaustive list, see Rose (1997, p. 5).
12See Ralli v. Troop, 157 U.S. 386, 393 (1895).
13See Navigazione Generale Italiana v. Spencer Kellogg & Sons, 92 F.2d 41 (2d Cir. 1937).
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While the law of general average is part of the general maritime law of nations, interna-

tional maritime interests have created a set of rules to harmonize general average practice

around the world (Robertson et al. 2001, p. 426). The first version of these rules was known

as the Glasgow Resolutions 1860 (Lowndes et al. 1912, pp. 41-44). The current version is

known as the York-Antwerp Rules 2016. These rules have never been adopted by treaty and

do not have the force of law; however, they are widely incorporated in bills of lading and

courts generally enforce them as binding terms of contract between the parties (Gilmore and

Black 1975, pp. 252-253; Robertson et al. 2001, p. 426; Shoenbaum 2011, pp. 256-257).14

[TBA: Paragraphs on (i) modern cases of general average and (ii) marine insurance and

general average.]

3 The General Average Game

There is a set N = {1, . . . , N} of N > 2 cargo owners. Each owner i ∈ N ships one cargo

box with unit weight on the same vessel. Each owner i has a utility function Ui that is

strictly increasing, strictly concave, and twice differentiable. To capture heterogeneity in

risk preferences, we assume Ui ̸= Uj for all i, j ∈ N , i ̸= j.15 Without loss of generality, we

normalize each owner’s initial wealth to zero, apart from her cargo box.

The true value of owner i’s cargo box is ti ∈ (0, t] where t > 0. The true value ti is owner

i’s subjective and private information. The true values are independent and identically

distributed according to a probability density function ft with support (0, t]. Consequently,

with probability one, there are no ties among the true values. This captures heterogeneity

in endowments. Let t = (t1, . . . , tN) denote the vector of true values and T =
∑N

i=1 ti denote

14The York-Antwerp Rules 2016 are available at comitemaritime.org. They have three parts. Two prefa-
tory rules form the first part. The second part comprises seven rules lettered A through G that specify
basic principles. The third part contains 23 rules numbered I through XXIII that cover specific types of
losses. Because our general average game features the jettison of cargo, we highlight two rules pertaining to
cargo lost by sacrifice. First, Rules XVI(a)(i) & XVII(a)(i) together provide that the amount to be allowed
as general average, and the contribution to a general average, shall be based on the value at the time of
shipment, unless there is a commercial invoice rendered to the receiver, in which case it shall be based on
the value at the time of discharge. Second, Rule XIX(b) provides that “[w]here goods have been wrongfully
declared at the time of shipment at a value which is lower than their real value, any general average loss or
damage shall be allowed on the basis of their declared value, but such goods shall contribute on the basis
of their actual value.” In our general average game, we consider the situation where the true values are the
cargo owners’ subjective and private information, and hence we posit that recovery amounts for jettisoned
cargo, and contribution amounts for all cargo, are based on the declared values at the time of shipment.
This is consistent with Rules XVI(a)(i) & XVII(a)(i), but seemingly inconsistent with Rule XIX(b); however,
when cargo values are subjective and private information, Rule XIX(b) is facially inoperable.

15The case of heterogeneity is arguably the interesting case, as there is ample evidence of heterogeneity
in risk preferences in insurance settings (Cohen and Einav 2007; Einav et al. 2012; Barseghyan et al. 2011,
2013, 2016, 2021), including mutual insurance settings (Mazzocco and Saini 2012; Chiappori et al. 2014).
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the total true value of the cargo boxes. For the vector of true values, we sometimes use the

notation t = (ti, t−i) where t−i ∈ (0, t]N−1 refers to the subvector of true values other than ti.

At the outset of the venture, the owners privately declare the values of their cargo boxes

to the master of the vessel. We assume that the master subsequently publishes the declared

values. This assumption is without loss of generality, however, because no further strategic

decisions are made in the game. Other than the true values, which are the owners’ private

information, we assume that all other aspects of the game are common knowledge.

Let vi ∈ (0, t] denote the declared value of owner i’s cargo box, v = (v1, . . . , vN) denote

the vector of declared values, and V =
∑N

i=1 vi denote the total declared value of the cargo

boxes. For the vector of declared values, we sometimes use the notation v = (vi, v−i) where

v−i ∈ (0, t]N−1 refers to the subvector of declared values other than vi.

The owners’ declarations—and the realization of a random tie-breaking rule r applied

to break any ties among them—induce a strict ordering of the cargo boxes. Assume r is

distributed according to a probability mass function fr with support Ψ(N ), where Ψ(N )

denotes the set of all permutations of N . A realization of r is a randomly selected ordering

of the cargo owners.16 Thus, for any and all sets of tied declarations, a realization of r can

be applied to strictly order such declarations. Let ni(v, r) denote the place of owner i’s cargo

box in the ascending order of declared values. (For the avoidance of doubt, all references to

“the ascending order of declared values” or “in ascending order of declared value” refer to

such order with any ties broken.) We assume that the master labels each cargo box with its

owner’s identity, declared value, and place in the ascending order of declared values.

In an emergency, the master jettisons cargo boxes in ascending order of declared value.

Let Θ = {0, . . . , N} and θ ∈ Θ denote the number of cargo boxes that must be jettisoned

in order to save the vessel and the remaining cargo. Assume θ is distributed according to

a probability mass function fθ with support Θ. Owner i’s cargo box is jettisoned if and

only if ni(v, r) ≤ θ. Let Jv(v, θ) denote the total declared value of the cargo boxes that

are jettisoned (i.e., the sum of their declared values) and Pv(v, θ) = Jv(v, θ)/V denote the

proportion of the total declared value that is jettisoned. Similarly, let Jt(t, v, r, θ) denote the

total true value of the cargo boxes that are jettisoned (i.e., the sum of their true values) and

Pt(t, v, r, θ) = Jt(v, θ)/T denote the proportion of the total true value that is jettisoned.17

Note that while Pv(v, θ) is common knowledge, Pt(t, v, r, θ) is unknown to all.

16The only requirement that fr must satisfy is that all permutations must have positive probability.
17Note that the total declared value of the cargo boxes that are jettisoned does not depend on r because

it only affects the ordering of cargo boxes with equal declared values. By contrast, the total true value of
the cargo boxes that are jettisoned does depend on r because, with probability one, cargo boxes with equal
declared values have unequal true values.
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Under the law of general average, which prescribes proportional sharing of the collective

loss, owner i’s final wealth equals vi−viPv(v, θ) if her cargo box is jettisoned and ti−viPv(v, θ)

if her cargo box is not jettisoned. That is, owner i’s payoff is

ci =

{
vi − viPv(v, θ) if ni(v, r) ≤ θ

ti − viPv(v, θ) if ni(v, r) > θ
. (1)

In what follows, we sometimes refer to the first component of owner i’s payoff, vi or ti

(as the case may be), as her recovery, and to the second component, viPv(v, θ), as her

contribution. Observe that summing the payoffs across all owners for any given θ, we obtain

(1−Pt(t, v, r, θ))T .
18 Thus, the outcome of the general average game is an allocation among

the owners of the total true value of the cargo boxes that are not jettisoned.

4 Equilibrium of the Bayesian Game

Assume cargo owners have expected utility preferences. In this case the general average game

is a Bayesian game. Each owner i knows the true value of her cargo box ti (and all other

aspects of the game other than t−i). Her declaration, therefore, is a function bi : (0, t] → (0, t].

The declaration function bi is effectively owner i’s strategy. Let b = (b1, . . . , bN) denote the

vector of declaration functions. We sometimes use the notation b = (bi, b−i) where b−i refers

to the subvector of all declaration functions other than bi, and we sometimes write bi as bi(·)
to emphasize that it is a function.19 In equilibrium, for every owner i ∈ N , (i) it is as if she

the declaration functions b−i(·), and hence knows v−i = b−i(t−i) for all t−i ∈ (0, t]N−1, and

(ii) her declaration vi = bi(ti) must maximize her expected payoff given b−i(·).
As we note in section 1, truthful reporting, i.e., bi(ti) = ti for all i ∈ N and ti ∈ (0, t],

is sufficient, but not necessary, to enable the master to minimize the owners’ collective loss.

What’s necessary is truthful ordering, i.e., the owners’ declared values must be in the same

rank order as their true values.

Definition 1 The cargo owners’ declared values have a truthful order if and only if

ti < tj ⇐⇒ bi(ti) < bj(tj)

for all i, j ∈ N and ti, tj ∈ (0, t].

18See section A.1 in the Appendix.
19For the same reason, we sometimes write other functions in this way as well—e.g., Ui(·).
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The following lemma, the proof of which is set forth in section A.2 of the Appendix,

establishes that if the declared values have a truthful order, then every owner must have the

same declaration function.

Lemma 1 If the declared values have a truthful order, then bi(·) = bj(·) for all i, j ∈ N .

We now can state the following result.

Proposition 1 If cargo owners have expected utility preferences, then there does not exist a

Bayesian Nash equilibrium of the general average game in which the owners’ declared values

have a truthful order.

Observe that truthful reporting implies truthful ordering, but not vice versa. Hence, if we

do not have truthful ordering in equilibrium, then we do not have truthful reporting either.

Corollary 1 If cargo owners have expected utility preferences, then there does not exist a

Bayesian Nash equilibrium of the general average game in which all owners truthfully declare

the values of their cargo boxes.

The proof of proposition 1 is set forth in section A.3 of the Appendix. The following is

a sketch of the argument. Assume the owners’ declared values have a truthful order. Take

any owner i ∈ N and any declaration functions b−i(·). Owner i’s declaration problem is

max
vi∈(0,t]

Πi(ti, vi, b−i(t−i), r, θ) = E
t−i,r,θ

[Ui(ci(ti, vi, b−i(t−i), r, θ))] (2)

where we now write owner i’s payoff ci as ci(ti, vi, b−i(t−i), r, θ) to make explicit the variables

on which it depends and to reflect that the other owners’ declared values v−i depend on their

true values t−i via their declaration functions b−i(·):

ci(ti, vi, b−i(t−i), r, θ) =

{
vi − viPv(vi, b−i(t−i), θ) if ni(vi, v−i, r) ≤ θ

ti − viPv(vi, b−i(t−i), θ) if ni(vi, v−i, r) > θ
.

Observe that owner i can compute her expected payoff Πi(ti, vi, b−i(t−i), r, θ) for any dec-

laration vi as she knows the distributions of t−i, r, and θ. The solution to problem (2) is

v∗i = b∗i (ti). However, because (Ui, ti) ̸= (Uj, tj) for any other owner j ∈ N , the solution for

another owner j is v∗j = b∗j(tj) where b∗j(·) ̸= b∗i (·), which contradicts lemma 1. Hence, the

owners’ declared values cannot have a truthful order in equilibrium, and so we do not have

truthful reporting in equilibrium.
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5 Equilibrium of the Maxmin Game

In the previous section, we showed that there does not exist a truthful equilibrium of the

general average game if cargo owners have expected utility preferences. In this section, by

contrast, we establish the following result.

Proposition 2 If cargo owners have maxmin utility preferences, then truthful declarations

by all owners is the unique Nash equilibrium of the general average game.

Assume owners have maxmin utility preferences. Given any declarations v−i by the other

owners, owner i’s declaration problem is

max
vi∈(0,t]

min
v−i∈(0,t]N−1

r∈Ψ(N )
θ∈Θ

{
Ui(vi − viPv(vi, v−i, θ)) if ni(vi, v−i, r) ≤ θ

Ui(ti − viPv(vi, v−i, θ)) if ni(vi, v−i, r) > θ
.

In other words, the owner chooses her declaration, vi, to maximize her payoff assuming the

worst-case combination of the declarations by the other owners v−i, the realization of the

tie-breaking rule r, and the number of cargo boxes that are jettisoned θ.

Observe that if θ ∈ {0, N}, the owner’s utility does not depend on her declaration vi.

After all, if no cargo boxes are jettisoned then her payoff is ti, and if all cargo boxes are

jettisoned then her payoff is zero.20 Thus, defining Θ = {1, . . . , N − 1}, the nondegenerate

problem is

max
vi∈(0,t]

min
v−i∈(0,t]N−1

r∈Ψ(N )

θ∈Θ

{
Ui(vi − viPv(vi, v−i, θ)) if ni(vi, v−i, r) ≤ θ

Ui(ti − viPv(vi, v−i, θ)) if ni(vi, v−i, r) > θ
. (3)

Looking at problem (3), we can see that, given vi, whether or not owner i’s cargo box

is jettisoned, the worst-case combination of v−i and θ is the combination that yields the

maximum value of P (vi, v−i, θ). The following lemma establishes that this value is (N−1)/N .

Lemma 2 Take any vi ∈ (0, t]. Suppose v−i ∈ (0, t]N−1, r ∈ Ψ(N ), and θ ∈ Θ. Then the

maximum value that Pv(vi, v−i, θ) can achieve is (N−1)/N . This value is achieved by setting

vj = vi for all j ∈ N , j ̸= i, and θ = N − 1.

Proof See section A.4 in the Appendix.

20Formally, if θ = 0 then Pv(vi, v−i, θ) = 0 and hence ti − viPv(vi, v−i, θ) = ti, and if θ = N then
Pv(vi, v−i, θ) = 1 and hence vi − viPv(vi, v−i, θ) = 0.
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In what follows, we consider two collectively exhaustive cases, vi ≥ ti and vi ≤ ti, and

apply the lemma 2 to show that in each case the solution to problem (3) is v∗i = ti.

First, suppose the owner declares vi ≥ ti. For any given combination of vi and θ, this

implies vi − viPv(vi, v−i, θ) ≥ ti − viPv(vi, v−i, θ). It follows that the worst-case combination

of vi, r, and θ is the combination that yields Pv(vi, v−i, θ) = (N−1)/N and ni(vi, v−i, r) > θ.

In this case, problem (3) amounts to

max
vi∈[ti,t]

Ui

(
ti − vi

N − 1

N

)
.

Observe that ti−vi[(N−1)/N ] is strictly decreasing in vi. Because Ui(·) is strictly increasing,

this implies that the solution to the owner’s problem in this case is v∗i = ti.

Next, suppose the owner declares vi ≤ ti. For any given combination of vi and θ, this

implies vi − viPv(vi, v−i, θ) ≤ ti − viPv(vi, v−i, θ). It follows that the worst-case combination

of vi, r, and θ is the combination that yields Pv(vi, v−i, θ) = (N−1)/N and ni(vi, v−i, r) ≤ θ.

In this case, problem (3) amounts to

max
vi∈(0,ti]

Ui

(
vi − vi

N − 1

N

)
.

Observe that vi−vi[(N−1)/N ] is strictly increasing in vi. Because Ui(·) is strictly increasing,

this implies that the solution to the owner’s problem in this case is also v∗i = ti.

The foregoing establishes that making a truthful declaration is the unique solution to

problem (3), assuming owner i has maxmin utility preferences. Because owner i is arbitrary,

this implies that if cargo owners have maxmin utility preferences, then truthful declarations

by all owners is the unique Nash equilibrium of the general average game.

Remark The key to understanding owner i’s maxmin behavior lies in her “conjecture” that

whatever declaration vi she chooses, the other owners and nature will “conspire” to minimize

her payoff. This entails them choosing v−i and θ to maximize Pv(vi, v−i, θ), which increases

her contribution, viPv(vi, v−i, θ), all else equal. By lemma 2, these values are v−i = vi and

θ = (N − 1)/N . Moreover, owner i conjectures that (i) if she overdeclares then the tie-

breaking rule will result in her cargo box not being jettisoned, in which case she receives

her true value minus her contribution (i.e., she is denied the benefit of her overdeclaration

(overrecovery) but suffers the cost (higher contribution)), and (ii) if she underdeclares then

the tie-breaking rule will result in her cargo box being jettisoned, in which case she receives

her declared value minus her contribution (i.e., she suffers the cost of her underdeclaration

(underrecovery) which exceeds the benefit (lower contribution)). In the former case she
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gains by decreasing her declaration to her true value (which does not affect her recovery but

decreases her contribution), and in the latter case she gains by increasing her declaration to

her true value (which increases her recovery by more than it increases her contribution).

6 Pareto Efficiency

Recall that the outcome of the general average game is an allocation among the cargo owners

of the total true value of the cargo boxes that are not jettisoned, (1−Pt(t, v, r, θ))T . In this

section, we investigate the conditions under which an allocation prescribed by the law of

general average, to which we refer as a general average allocation, is Pareto efficient.

As a threshold matter, Pareto efficiency requires that the proportion of the total true

value that is jettisoned, Pt(t, v, r, θ), is the minimum necessary to save the vessel and the

remaining cargo. We refer to this requirement as resource efficiency. Given that cargo boxes

are jettisoned in ascending order of declared value, resource efficiency is attained when the

declared values have a truthful order.

6.1 Expected Utility Preferences

Suppose cargo owners have expected utility preferences. Recall that in this case there does

not exist a Bayesian Nash equilibrium of the general average game in which the declared

values have a truthful order. An immediate implication is that the law of general average does

not yield a Pareto efficient allocation in equilibrium, because without truthful ordering (let

alone truthful reporting) resource efficiency is not attained. Even with truthful reporting,

however, a general average allocation, which ipso facto entails proportional loss sharing, is

Pareto efficient if and only if owners have identical (up to a positive scalar) CRRA utility

functions. We prove this claim in section A.5 of the Appendix.

The following proposition recaps the foregoing.

Proposition 3 If cargo owners have expected utility preferences, then the law of general av-

erage does not yield a Pareto efficient allocation in equilibrium, because there is no Bayesian

Nash equilibrium of the general average game in which there is a truthful ordering of declared

values (let alone truthful reporting), and hence resource efficiency is not attained in equilib-

rium. Even assuming truthful reporting, a general average allocation is Pareto efficient if

and only if owners have identical (up to a positive scalar) CRRA utility functions.

11



6.2 Maxmin Utility Preferences

Now suppose cargo owners have maxmin utility preferences. Recall that in this case truth-

ful reporting is the unique Nash equilibrium of the general average game. In equilibrium,

therefore, the law of general average yields the following allocation as a function of θ:

ci(θ) = (1− Pt(t, v, r, θ))ti ∀ i ∈ N , ∀ θ ∈ Θ.

Call this allocation c∗ and denote its components by c∗i (θ).

With maxmin preferences, the utility that owner i derives from any allocation c is the

utility assuming the worse-case state, minθ∈Θ Ui(ci(θ)). Let θ denote the worse-case state.21

Then the utility that owner i derives from an allocation c is Ui(ci(θ)).

Given resource efficiency, which is implied by truthful reporting, an allocation is Pareto

efficient if and only if there does not exist a reallocation of resources that makes at least one

owner better off without making at least one other owner worse off. Take allocation c∗. The

only utility-relevant components of c∗ are the payoffs in state θ,

c∗i (θ) = (1− Pt(t, v, r, θ))ti ∀ i ∈ N ,

and the only relevant resource constraint is the one pertaining to state θ,

N∑
i=1

c∗i (θ) = (1− Pt(t, v, r, θ))T.

Because c∗ exhausts all available resources in each state,22 it follows that any reallocation

c′ which increases the payoff in state θ to owner i, c′i(θ) > c∗i (θ), necessarily decreases

the payoff in state θ to some other owner j, c′j(θ) < c∗j(θ), in order to obey the resource

constraint for state θ. Because Ui(·) is strictly increasing, this implies that there does not

exist a reallocation of resources that makes at least one owner better off without making at

least one other owner worse off. Hence, allocation c∗ is Pareto efficient. To recap:

Proposition 4 If cargo owners have maxmin utility preferences, then the law of general

average yields a Pareto efficient allocation in equilibrium.

21Lemma 2 establishes that θ = N − 1. The argument that follows, however, applies given any value of θ.
22For all θ ∈ Θ,

∑N
i=1 c

∗
i (θ) =

∑N
i=1(1− Pt(t, v, r, θ))ti = (1− Pt(t, v, r, θ))T .
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7 Discussion

[This section will contain a concluding discussion in which we (i) compare and contrast the

results of the general average game with those of the La Crema game in (Cabrales et al.

2003), (ii) suggest why the maxmin criterion may be a reasonable decision rule in the context

of the law of general average, and (iii) point to directions for future research (e.g., examining

alternative sharing rules). With respect to (ii), we will argue that while weighing states of

nature and maximization of expected utility may be reasonable when a decision maker has

a credible basis for placing a subjective probability distribution on unknown features of the

decision problem, when this is not the case—i.e., when the decision maker faces ambiguity, or

Knightian uncertainty, which may very well be the case in the general average context, where

each voyage and its risks may be idiosyncratic/singular—a decision maker may reasonably

evaluate actions by the worst utility that they may yield and choose an action that yields

that least-bad worst utility (Manski 2013). We will also highlight that the maxmin criterion

is a deeply rooted idea in social science. Wald (1950) developed it as a solution of a statistical

decision problem when a prior probability distribution is unknown. Rawls (1971) invoked

it as part of a normative theory of justice. Gilboa and Schmeidler (1989) proposed it as

a model of choice under uncertainty when the decision maker has too little information to

form a prior and is uncertainty averse. In the end, the maxmin criterion may make quite a

bit of sense for a cargo owner that must make a decision regarding what to declare under a

veil of ignorance about nature’s true distribution.]

Appendix

A.1 Summation of Payoffs

Take any θ ∈ Θ. Let J (θ) ⊆ N denote the set of owners whose cargo boxes are jettisoned.

Summing the payoffs in equation (1) across all owners, we have∑
i∈J (θ)

vi − viPv(v, θ) +
∑

i∈N\J (θ)

ti − viPv(v, θ)

=
∑

i∈J (θ)

vi +
∑

i∈N\J (θ)

ti −
∑
i∈N

viPv(v, θ)

= Jv(v, θ) + (1− Pt(t, v, r, θ))T − Jv(v, θ) = (1− Pt(t, v, r, θ))T.

13



A.2 Proof of Lemma 1

[TBA]

A.3 Proof of Proposition 1

[TBA]

A.4 Proof of Lemma 2

Take any vi ∈ (0, t]. Suppose v−i ∈ (0, t]N−1, r ∈ Ψ(N ), and θ ∈ Θ are such that owner

i’s cargo box is jettisoned. Let J (θ) ⊆ N denote the set of owners whose cargo boxes are

jettisoned. Note that i ∈ J (θ). Then

Pv(vi, v−i, θ) =

vi +
∑

j∈J (θ),j ̸=i

vj

vi +
∑

j∈N ,j ̸=i

vj
. (A.1)

Observe that the numerator of equation (A.1) is strictly increasing in θ while the denominator

is independent of θ. Hence, to maximize equation (A.1), we must set θ = N − 1. Given this,

equation (A.1) becomes

Pv(vi, v−i, θ) =

vi +
∑

j∈J (θ),j ̸=i,j ̸=N

vj

vi + vN +
∑

j∈N ,j ̸=i,j ̸=N

vj
. (A.2)

Note that equation (A.2) is strictly increasing in the summation term in the numerator.

Thus, to maximize (A.2), we must set each declared value in the summation equal to t,

which implies that we also must set vN equal to t (because vN is the highest declared value),

and we conclude that the maximum value of Pv(vi, v−i, θ) in this case is

Pv(vi, v−i, θ) =
vi + (N − 2)t

vi + (N − 1)t
. (A.3)

Take the same vi ∈ (0, t]. But now suppose v−i ∈ (0, t]N−1, r ∈ Ψ(N ), and θ ∈ Θ are

such that owner i’s cargo box is not jettisoned. Let J (θ) ⊆ N denote the set of owners
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whose cargo boxes are jettisoned. Note that now i /∈ J (θ). Then

Pv(vi, v−i, θ) =

vi +
∑

j∈J (θ)

vj

vi +
∑

j∈N ,j ̸=i

vj
. (A.4)

Observe that the numerator of equation (A.4) is strictly increasing in θ while the denominator

is independent of θ. Hence, to maximize equation (A.4), we must set θ = N − 1. Given this,

the summations in the numerator and denominator are both the summation of all declared

values other than vi. Thus, to maximize equation (A.4), we must set these declared values as

high as possible without violating the condition ni(vi, v−i, r) > θ. We can do this by setting

them all equal to vi. (With all declared values equal, the tie-breaking rule can be set such

that owner i’s cargo box is the only one not jettisoned.) We therefore conclude that the

maximum value of Pv(vi, v−i, θ) in this case is

Pv(vi, v−i, θ) =

∑
j∈N ,j ̸=i

vj

vi +
∑

j∈N ,j ̸=i

vj
=

(N − 1)vi
vi + (N − 1)vi

=
(N − 1)

N
. (A.5)

Note that because the maximum value of Pv(vi, v−i, θ) set forth in equation (A.5), namely

(N−1)/N , is achieved with all declared values being equal, it follows that it can be achieved

with the tie-breaking rule yielding either that owner i’s cargo box is not the one jettisoned

or that owner i’s cargo box is the one jettisoned. Therefore, to conclude the proof, it is

sufficient to show that (N −1)/N is weakly greater than the maximum value of Pv(vi, v−i, θ)

set forth in equation (A.3). Indeed, this is immediate by noting that equation (A.3) is strictly

increasing in vi and, in fact, is equal to (N − 1)/N when vi = t.

A.5 Proof of Claim in Section 6

In this section we prove the claim, made in section 6, that if cargo owners have expected

utility preferences, then even with truthful reporting, a general average allocation is Pareto

efficient if and only if owners have identical (up to a positive scalar) CRRA utility functions.

Assume cargo owners have expected utility preferences. Let ci(θ) denote the payoff to

owner i in state θ. An allocation is an array c = [ci(θ)]i∈N ,θ∈Θ of payoffs to all owners

i ∈ N in all states θ ∈ Θ. With truthful reporting, the law of general average prescribes the
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following allocation:

ci(θ) = (1− Pt(t, v, r, θ))ti ∀ i ∈ N , ∀ θ ∈ Θ.

Thus, a truthful general average allocation is characterized by

cj(θ)

ci(θ)
=

tj
ti

∀ i, j ∈ N , ∀ θ ∈ Θ, (A.6)

ci(θ
′′)

ci(θ′)
=

1− Pt(t, v, r, θ
′′)

1− Pt(t, v, r, θ′)
∀ i ∈ N , ∀ θ′, θ′′ ∈ Θ. (A.7)

Give the assumptions on Ui, the set of Pareto efficient allocations comprises the solutions

to the planner’s problem with positive Pareto weights:

max
c

N∑
i=1

N∑
θ=0

αi [Ui(ci(θ))µ(θ)] , α1, . . . , αN > 0,

subject to the resource constraints

N∑
i=1

ci(θ) = (1− Pt(t, v, r, θ))T ∀ θ ∈ Θ,

which are satisfied here. The necessary and sufficient first-order conditions are

U ′
i(ci(θ)) =

λθ

µ(θ)αi

∀ i ∈ N , ∀ θ ∈ Θ,

where λθ denotes the Lagrange multiplier pertaining to the θ-constraint. It follows that the

set of Pareto efficient allocations is characterized by

U ′
i(ci(θ))

U ′
j(cj(θ))

=
αj

αi

∀ i, j ∈ N , ∀ θ ∈ Θ, (A.8)

U ′
i(ci(θ

′))

U ′
i(ci(θ

′′))
=

λθ′µ(θ
′′)

λθ′′µ(θ′)
∀ i ∈ N , ∀ θ′, θ′′ ∈ Θ. (A.9)

Suppose owners have identical (up to a positive scalar) CRRA utility functions. That is,

Ui(x) =

{
βi

x1−η

1−η
if η ̸= 1

βi ln(x) if η = 1
∀ i ∈ N ,
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where βi > 0 and η ≥ 0. Then conditions (A.8) and (A.9) become

cj(θ)

ci(θ)
=

[
αj

αi

] 1
η

∀ i, j ∈ N , ∀ θ ∈ Θ, (A.10)

ci(θ
′′)

ci(θ′)
=

[
λθ′µ(θ

′′)

λθ′′µ(θ′)

] 1
η

∀ i ∈ N , ∀ θ′, θ′′ ∈ Θ. (A.11)

Comparing conditions (A.6)-(A.7) and conditions (A.10)-(A.11), we can see that there

exist positive Pareto weights and Lagrange multipliers such that the two pairs of conditions

are equivalent. Moreover, this is not the case for utility functions outside the CRRA family,

because only CRRA utility implies that payoff ratios across owners depend only on relative

wealth levels and that payoff ratios across states depend only on relative shadow prices.
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